Chapter 4. Measuring What Matters Principles for a Balanced Data Suite That Prioritizes Problem Solving and Learning
Kate Bridges and Michael Woolcock
Responding effectively and with professional integrity to public administration¡¯s many challenges requires recognizing that access to more and better quantitative data is necessary but insufficient. An over-reliance on quantitative data comes with its own risks, of which public sector managers should be keenly aware. We focus on four such risks: First, that attaining easy-to-measure targets becomes a false standard of broader success. Second, that measurement becomes conflated with what management is and does. Third, that measurement inhibits a deeper understanding of the key problems and their constituent parts. And fourth, that political pressure to manipulate key indicators can lead, if undetected, to falsification and unwarranted claims or, if exposed, to jeopardizing the perceived integrity of many related (and otherwise worthy) measurement efforts. Left unattended, the cumulative concern is that these risks will inhibit rather than promote the core problem-solving and implementation capabilities of public sector organizations, an issue of high importance everywhere but especially in developing countries. We offer four cross-cutting principles for building an approach to the use of quantitative data ¨C a ¡®balanced data suite¡¯ ¨C that strengthens problem-solving and learning in public administration: (1) Identify and manage the organizational capacity and power relations that shape data management; (2) Focus quantitative measures of success on those aspects which are close to the problem; (3) Embrace a role for qualitative data, especially for those aspects which require in-depth, context-specific knowledge; and (4) Protect space for judgment, discretion and deliberation in those (many) decision-making domains which inherently cannot be quantified.